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Abstract. In the linearized-gravity approximation we numerically compute the amount of 

gravitational radiation produced by the collision of two true-vacuum bubbles in Minkowski 
space (these two approximations are valid for r 5 H-l). The bubbles are separated by 

distance d and we calculate the amount of gravitational radiation that is produced in 

a time T - d (in a cosmological phase transition r corresponds to the duration of the 

transition, which is expected to be of the order of the bubble separation d). We find that 

the amount of gravitational radiation produced depends only upon the grossest features of 

the collision: the time T and the energy density associated with the false-vacuum state, pvU. 
In particular, the spectrum dEGw/dw cx p* v.C~6 and peaks at a characteristic frequency 

timax Y 3.8/r, and the fraction of the vacuum energy released into gravitational waves is 

about ~.~xIO-~(T/H-~)*, where HZ = 8rGp,,,/3 (T/H-’ 1s expected to be of the order of 

a few per cent). We address in some detail the import,ant symmetry issues in the problem, 
and how the familiar “quadrupole approximation” breaks down in a most unusual way: 

It overestimates the amount of gravitational radiation produced in this highly relativistic 

situation by more than a factor of 50. Most of our results are for collisions of bubbles 

of equal size, though we briefly consider the collision of vacuum bubbles of unequal size. 

Our work implies that the vacuum-bubble collisions associated with a strongly first-order 

phase transitions are a very potent cosmological source of gravitational radiation. 
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I. Introduction 

Gravitational radiation from cosmological processes may be a rich source of information 

about the early Universe. Though efforts to detect gravity waves directly have not yet born 

fruit, the “menu” of sources-many of which cannot be probed by other means-have 
made clear the impact that gravitational wave astronomy might have on both cosmology 
and astrophysics [l]. Pulsar timing data and the smoothness of the cosmic microwave 

background already place limits on the amplitude of the radiation, and a new generation of 

detectors-laser interferometric devices (LIGOs) and improved resonance bar detectors- 

are planned for the near future [1,2]. 

Point sources of gravitational radiation will be of most interest to astrophysicists; how- 

ever, for cosmology the stochastic background of gravity waves which exists today will be 

of the greatest interest. Just as the blackbody microwave background is a remnant of the 

early history of our Universe (z w 1000, t N 300,000 yr), the gravity-wave background 
is as well. However, its character is radically different from the microwave background. 

Thermal decoupling of gravitons presumably occurred at the Planck epoch (T N 10” GeV, 

t w 1O-*3 set), much earlier than decoupling of photons, so the resulting black-body spec- 

trum is at a lower temperature than the microwave background (5 1 K). If the Universe 

went through an inflationary phase, the blackbody graviton spectrum will “red shift away” 
to an undetectably low temperature T < 1 K; a new spectrum arises due to quantum fluc- 

tuations [3]. More importantly, gravitational radiation produced by cosmological processes 

occurring after inflation is just superposed onto the stochastic background and not ther- 
malized. Thus gravitons may provide us with a unique probe of processes occurring at 

very early times. Since the frequency of gravity waves produced at a given epoch is likely 

to be related to the Hubble time H-l, the stochastic background could have the thermal 

history of the Universe spread across its spectrum. 

Potentially important cosmological sources include cosmic strings [4], textures [5], 

domain-wall collisions, soliton stars [6], and phase transitions [7]. In particular, oscillating 

string loops produce large amounts of gravitational radiation, and timing measurements of 

the millisecond pulsar have been used to place stringent limits on the existence of cosmic 

strings [8]. While the radiation from textures has yet to be computed, their unwinding 

involves considerable energy densities, making them a possible strong source. First-order 

phase transitions can be violent, producing large energy gradients and high velocities, the 

necessary ingredients for a strong source of gravitational radiation. Thus far, only qualita- 

tive estimates of the amount of gravitational radiation from a first-order phase transition 

have been made [7]. 

In this paper, we initiate detailed study of the gravitational radiation produced in 
a strongly first-order phase transition. In such a transition, the Universe starts in a 

metastable false-vacuum state; bubbles of true vacuum are nucleated through either quan- 
turn or thermal tunneling. As a bubble expands, the liberated vacuum energy is converted 
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into kinetic energy of the bubble wall. Eventually bubbles collide, completing the transi- 

tion. Clearly, this situation involves the key ingredients of concentrated energy and high 
velocities necessary to produce significant gravitational radiation. 

Our work is motivated by a recent revival of interest in theories where inflation ends 

with a first-order phase transition, wherein the vacuum energy that drives inflation is 

eventually converted into radiation by bubble collisions [9]. Dubbed “extended” or ‘Yirst- 

order” inflation, these models circumvent the “graceful-exit” problem that plagued old 

inflation by means of a time dependent expansion and/or bubble-nucleation rate. Turner 

and Wilczek have estimated the stochastic background of gravitational radiation produced 
by bubble collisions in these models and found that bubble collisions are a very potent 
source of gravity waves and provide a unique signature of first-order inflation [lo]. Here 

we explore the production process in more detail, using numerical simulations of bubble 
collisions. Our calculations are also relevant to other first-order phase transitions in the 

early Universe, and this application of our work is discussed elsewhere [Ill. 

Specifically, we compute numerically the gravitational radiation resulting from the col- 
lision of two scalar-field vacuum bubbles. We do so by evolving two bubbles classically 

for a time r comparable to their separation d (d 2 r 5 d). Our calculation is done 
in Minkowski space, ignoring the gravitational effects of the bubbles themselves and the 

expansion of the Universe, but to all orders in v/c (i.e., in the linearized-gravity approxi- 

mation; as we shall discuss, the aforementioned assumptions are valid for r, d 5 H-l). We 
find the remarkable result that the spectrum of radiation and total amount of radiation 

only depend upon the grossest features of the bubble collision, the vacuum energy density 

and the time/separation T. In particular, the characteristic frequency of the gravity waves 

w N 3.8/r, dEGw/dw cc pvac?, and the fraction of the vacuum energy liberated into grav- 
ity waves by the collision of two bubbles f N 1.3 x 10-3(r/H-‘)2, where HZ = 87rGp,,,/3. 

In the next Section we commence with a detailed discussion of bubble dynamics and 

the symmetry issues involved in the problem. Section III covers the formalism of grav- 

itational wave generation and several technical issues. Theoretical expectations for the 
gravitational wave spectrum, based upon simple scaling arguments, are presented in Sec- 

tion IV. Our numerical calculations and results are presented in Section V. We end with 
a brief discussion of bubble kinematics in a phase transition as relevant to our work, and 

finally a few concluding remarks. Some technical discussion and formulae are relegated to 

two Appendices. 

II. Scalar-field Bubbles and Symmetry Issues 

(a) Bubble nucleation 

Consider a real scalar field 1p with Lagrangian density 

L: = $P’PanY -V(p), (1) 
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where our metric signature is (1, -1, -1, -1). We are interested in the case where the 

potential V(p) possesses two inequivalent local minima: a false- and a true-vacuum state. 
Throughout this paper we will use a v4 potential with two degenerate minima, V,(p), with 

an additional linear term that breaks the degeneracy: 

Kl(y) = ;(Y= - Yo*)=, 

V(Y) = WY) + h%“(Y + YOL (2) 

where E measures the degree of symmetry breaking between the two minima at rtys. Figure 
1 shows this potential for various values of E. The relative minimum at v+ = ~0 +O( eps) is 

the “false vacuum,” while the global minimum at up- = -~s+O(e~s) is the “true vacuum.” 

The difference in energy density between the false and true’vacua pyac N 2eX&. Classically, 
the false-vacuum state p = p+ is stable, but quantum mechanical tunnelling will cause it 

to decay to the true-vacuum state (3 = y-. This decay proceeds via quantum nucleation of 
true-vacuum bubbles that spontaneously appear from the false-vacuum state. Coleman has 

shown that the bubble with minimum action is O(4)-invariant [12]; the minimum-action 

“bounce” solution satisfies the equations 

Y = YP(P), p=&z, (3) 

-+3&aV d% 

V ~dp 3~' 
(4) 

with the boundary conditions 

lim Y(P) = Y+, 
& = 0. 

P-m ;i;;a 

where tE s it is Euclidean time. The Euclidean action for the O(4) bubble is 

(5) 

The most likely initial bubble configuration after the quantum nucleation event is obtained 

by analytically continuing the bounce solution to Minkowski space and then taking the 

t = 0 time slice. Bubbles of different sizes or profiles than the bounce solution have 

larger actions associated with their nucleation, and their nucleation rates are suppressed 

exponentially by the difference between their action and the bounce action. In any case, 

our results are very insensitive to the initial bubble configuration. 

For orientation we quickly summarize bubble nucleation in the “thin-wall” limit, valid 

when the false-vacuum energy is small compared to the height of the barrier between the 

false and true vacua (i.e., E < 1). In this approximation, it is straightforward to compute 
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expressions for the radius of the bubble at nucleation, R 0, and the Euclidean action for 

bubble nucleation, SE [12]: 

&, = -!- J ” hw’%?i?; 
Pvac -‘PO 

SE = 27n2 [J 
90 1 

4 
2P”.C3 

4w’%&i ; 
-VO 

HZ _ E Pvac 16~ E&J;, -=-- 
3 mPl* 3 mp12’ 

Direct evaluation of the required integral gives 

K2 RO SE=---; -= 
3~i.c~ H-1 

G’b) 

(7c) 

Since we expect ~0 to be of order the GUT scale for models of extended inflation-lo’s GeV 
or so-and even smaller for other phase transitions, the size of the bubble when it is nucle- 

ated should be much smaller than the horizon. This justifies the neglect of gravitational 
effects on bubble nucleation [13]-and as we shall see later-the neglect of the gravitational 

field of the bubble itself. 
Once a bubble is nucleated, its evolution is determined by the usual Klein-Gordon 

equation for a real scalar field, 

--v+-E, 
a29 
at= aP 

(9) 

The bubble initially has no kinetic energy. Since the interior true-vacuum region of the 

bubble has a lower energy than the surrounding false vacuum, an effective outward pressure 

exists on the walls of the bubble. This “vacuum pressure” forces the bubble to expand; 

the region of true vacuum becomes larger and larger. The velocity of the bubble walls 
asymptoticslly approaches the speed of light; the bubble wall becomes thinner as the 

surface energy density of the bubble increases. If we consider a pair of bubbles, each 

expands quiescently until the two bubbles collide. Since the bubble walls have large energy 

densities, the collision is violent. The colliding walls do not annihilate or pass through 

each other, but create a region where the scalar field oscillates rapidly. The collision of 

two vacuum bubbles is illustrated in Fig. 2. 

(b) Symmetry considerations 

The classical evolution of a true-vacuum bubble after its quantum mechanical nucle- 
ation possesses a high degree of symmetry. Most of the following symmetry considerations 

are well known [14]; here we review them in some detail because of their bearing on the 

present problem. The time evolution of a critical bubble is given by analytic continuation 
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of the O(4) symmetric solution to Minkowski space and taking the t > 0 part. The com- 

plete solution (-co < t < co) corresponds to a bubble that collapsed from infinite size to a 

minimum size Ro and then again expanded to infinite size. Because of the O(4) symmetry 

of the bounce, the complete solution is O(3,l) symmetric: observers in all Lorentz frames 

see the same thing. The symmetry implies that the field is a function only of x2 - t*; if 
we let x,,n denote a fiducial point within the bubble wall, then at time t the position of 

the bubble wall satisfies 
2 

xwa11 - t2 = & (lOa) 

where R. is the initial bubble radius. The bubble wall moves with constant acceleration 

and rapidly approaches the speed of light; 

uwdl = &-$p (lob) 

%a11 = d-GiF& (1Oc) 

Note that at late times, t > Ro, the Lorentz factor y increases as t/Ro; since the surface 
area of the bubble increases as 4& (for t >> Ro), the energy in the bubble wall increases 

;; &). L’k 

3, which is accounted for by the release of false-vacuum energy, E,,, 2 4rp,,,t3/3 

i ewise, it is important to note that the bubble wall becomes thinner due to 

Lorentz contraction: AR o( y-i o( t-l, where AR is the wall thickness. This fact must be 
taken into account when selecting the grid size for numerical evolution of the scalar field. 

The t > 0 history of the bubble is not O(3,l) invariant: It corresponds to a bubble 

nucleated on the t = 0 space-like hypersurface of a specific Lorentz frame. However, in 

the limit that Rc + 0, the t > 0 history of the bubble solution is O(3,l) invariant: It 

is the finite size of the bubbl e at t = 0 that defines a particular space-like hypersurface 
and breaks Lorentz invariance. Of course, a single vacuum bubble, due to its spherical 
symmetry, produces no gravitational radiation. 

Now consider two O(3,l) solutions with common time origins centered on the z-axis 
at positions t = &d/2 (in some Lorentz frame). If we neglect the interaction of the two 

bubbles for the moment and consider the complete histories of the two individual bubble 

solutions, we see that the “double-bubble” solution is O(2,l) invariant (the generators of 

the symmetry are Lorentz boosts along the +- and y-axes and rotations about the z-axis). 

If we include interactions between the bubbl es, the solution is still O(2,l) invariant1 since 

the scalar field equation of motion which governs the interactions is fully Lorentz invariant. 

However, the t > 0 evolution of the double-bubble solution is not O(2,l) invariant; O(2,l) 

invariance is broken by the finite size of the bubbles at nucleation. As in the single-bubble 

case, in the limit that the nucleated bubbles are of zero size (& -+ 0), the t > 0 history 

of the two bubbles is O(2,l) invariant. As we shall see shortly, O(2,l) invariance or 
noninvariance is a crucial issue. 
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The noninvariant Lorentz boost (along the z-axis) has the effect of changing the rela- 

tive nucleation times of the two bubbles. If the O(2,l) symmetry is unbroken, the general 
two-bubble collision is gained from the equal-bubble collision (i.e., simultaneous nucle- 

ation) simply by a Lorentz boost in the z-direction. More explicitly, for two bubbles with 

nucleation events (tl, zi) and (t2, ~2) with space-like separation, a Lorentz boost in the 
z-direction with velocity p = (tz - tl)/(tz - ~1) t ransforms the collision to a frame in 

which the bubbles are nucleated simultaneously and the problem possesses O(2,l) sym- 

metry. Conversely, for two bubbles nucleated simultaneously at z = *d/2, a Lorentz 

boost with velocity @ results in bubbles nucleated in the boosted frame at t = ytpd/2, 

z = fyd/2; when the bubbles collide in the boosted frame, the ratio of their diameters will 

be (1 + p)/( 1 - p). In the boosted frame, we still have O(2) symmetry (rotations around 
the z-axis); however, the additional boost symmetries in the I and y directions are now 

gone, since these boosts will alter the relative nucleation times of the two bubbles. 

What is the significance of the O(2,l) mvariance? Chao [15] has shown that an O(2,l) 
invariant space-time cannot support gravitational waves. Specifically, he demonstrates 

that the O(2,l) invariant space-time associated with the nucleation of two bubbles of zero 

size is isomorphic to an O(3) (S h c warzschild-de Sitter) space-time with a time-varying, 
spherically-symmetric stress-energy distribution. As is well appreciated, an O(3) space- 

time does not have suflicient degrees of freedom to support gravitational radiation; to 

produce gravitational radiation a source must have a time-varying quadrupole (or higher) 

multipole moment. A more heuristic explanation of why the fully O(2,l)symmetric colli- 
sion of two vacuum bubbles does not produce gravitational radiation proves helpful. Clearly 

the collision of two vacuum bubbles is highly nonspherical; thus the absence of gravita- 

tional radiation must trace to a precise cancellation of the radiation emitted at different 

times and places during the collision, just as the absence of gravitational radiation in a 

problem with spherical symmetry traces to the cancellation of the gravitational radiation 

emitted by the different parts of the spherically-symmetric matter distribution. In our 

case the O(2,l) invariance guarantees the exact cancellation; in the spherically-symmetric 
analogue it is the O(3) invariance that guarantees it. 

In order that the collision of two bubbles of true vacuum produce gravitational ra- 

diation, O(2,l) invariance must be broken. In the present circumstance, the nucleation 

event (as mentioned above) and the end of the phase transition break the invariance. Since 

bubbles are expected to be far apart at the time of their nucleation (i.e., Ro < d), they are 

nearly spherically symmetric when nucleated, and so the first of these symmetry-breaking 
effects does not result in significant gravitational radiation. (In Section VI we will show 

that d is expected to be much greater than Ro.) In any case the amount of radiation 
produced increases as d5, so that d >> & is the case of greatest interest. 

This brings us to the important O(2,l) symmetry-breaking effect, the one which allows 

for abundant gravitational radiation production from vacuum-bubble collisions. Ultimately 

we are not interested in the collision of just two bubbles of true vacuum. In realistic 
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scenarios where the phase transition is eventually completed, the two colliding bubbles 
expand outward and at some time meet up with space that is (more or less) in the true 

vacuum due to the nucleation, expansion, and collision of other bubbles. (Contrast this 

with the case of only two bubbles, where space outside the bubbles. 111 2 t, remains in 

the false vacuum.) We shall use a phenomenological cutoff to account for this fact: We 

compute the gravitational radiation emitted by two colliding bubbles from time t = 0 to 

time t = r, where r is roughly the duration of the phase transition. The time cutoff breaks 

O(2,l) symmetry since it must be specified in a particular Lorentz frame. The amount of 

radiation emitted will necessarily depend upon the time cutoff. The precise form of the 
cutoff obviously depends upon details of the phase transition. To model the cutoff, we 

multiply the stress-energy sources for gravitational radiation by a smooth function C(t), 
which we take as 

C(t) = { Lp[(t - Tc)2/To2], 
o<t<r, 
r, 5 t 5 T. (11) 

This cutoff factor smoothly ramps the sources to zero between t = rc and the cutoff time 
t = T. We generally take rc = 0.9r so that the “completion of the phase transition” 

takes place in the last 10% of the total time evolution of the bubbles. We also take ra 

small enough so that the sources are essentially zero at t = T. While the cutoff is ad 

hoc, our numerical results are not sensitive to the functional form of the cutoff, and vary 

in a sensible way with rc/r (see Sec. V). Also note that a smooth cutoff is necessary 

from a numerical point of view: it serves essentially as a window function for the Fourier 

transforms appearing in the radiation formulas derived in the following Section. An abrupt 

cutoff, C(t) = O(r - t) where 0 is the Heaviside function, would introduce spurious 

radiation that would swamp the physical signal, especially at high frequencies. 
The O(2,l) symmetry of the problem has very practical value. Even though the space- 

time of two equal-size colliding bubbles is not globally O(2,l) symmetric, the field (D(x, t) 

is a function of only two variables over its domain of definition [14,16]; i.e., for 0 5 t 5 7, 

p(x, t) = p(t2 - T2, 2) (12) 

where r2 E x2 + y2. Changing to hyperbolic coordinates defined by 

t = scoshg, I = ssinhII,cosB, y = ssinhGsin8, (2 > 2) (13a) 

t = s’sinh$‘, x = s’ cash $’ cos 8’, y = s’ cash $’ sin 8’, (t2 < r2) (136) 

it is clear that 9 is independent of $ ($‘) and 8 (0’); that is, p = p(s,z) or 9 = v(s’,z). 
In these coordinates the Lagrangian density and equation of motion become respectively 

(14) 
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Thus the evolution of two colliding bubbles reduces to a two-dimensional problem: one 

spatial variable z and one time variable s. For the problem at hand, calculations using 
this l+l dimensional wave equation are much less computationally demanding and allow 

far greater dynamic range. 

III. Generation of Gravitational Radiation 

(a) Assumptions and approzimations 

Because of the nonlinear nature of gravity in the context of general relativity, comput- 

ing gravitational radiation is more complicated than computing electromagnetic radiation 

[17]. In simplistic terms, the difficulty arises because the gravitational field itself (including 

gravitational radiation!) can act as a source. When computing electromagnetic radiation 

one often expands in powers of the velocity of the source, v/c. In the computation of grav- 
itational radiation, the analogous procedure is a double expansion in terms of the strength 

of the gravitational potential, d/c’, and the velocity of the source, v/c. For a gravitation- 
ally bound system, the two expansion parameters are of comparable size: C$ - u* (the virial 
relation). This relation holds for most astrophysical sources; however it certainly does not 

hold for the collision of two bubbles. Our problem is highly relativistic-the velocity of 

the bubble walls asymptotically approaches the speed of light as the bubbles expand-but 

gravity plays a negligible role-the bubble expansion is driven by the pressure difference 

between the true and false vacua. 

Throughout the present calculation, we make the following assumptions: 

1. Gravity is linearized, and gravitational effects on the expansion of the bubble itself are 

neglected. The radiation produced by the gravitational field of the bubbles and back 

reaction of radiation on the bubble motion are of course also ignored. In this approxi- 

mation the gravitational radiation problem is precisely analogous to its electromagnetic 
counterpart (except for additional tensor structure), 

2. Since the source reaches velocities very close to the speed of light, it is necessary to 

keep many terms in the source velocity v/c. We keep all orders in v/c, although a 

self-consistent approximation dictates expanding only to order n in the velocity, where 

4/C2 - (v/c)“. This approximation is commonly known as the “post-Minkowski” or 

“linearized” wave-generation formalism. 
3. The source is localized in space, so it is possible to define a “far-field zone” and use 

standard radiation formalism. A pair of vacuum bubbles expanding indefinitely is not 

a localized source, but because we impose a time cutoff (as explained above), the source 

for our problem is localized. 
4. We ignore the expansion of the Universe and gravitational effects on bubble nucleation. 

In the limit that the cutoff time r is much less than te Hubble time H-’ this is a valid 

approximation; as we shall see in Sec. VI, one expects r 5 H-‘. 

Before going on let us estimate the gravitational potential associated with the bubble. 
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Just outside a bubble of radius R, the gravitational potential is 4 N R3pvac/R - (R/H-‘)2. 

Thus we see that 4/c’ s v2/c2 N 0(l) provided that the radius of the bubble is less 

than the Hubble length, H-l; since the radius of the bubble R ‘v t 5 T neglecting the 

gravitational effects is justified so long as r 5 H-‘. The condition $/c2 s u2/c2 justifies 

neglecting gravitational effects on the expansion of the bubble as well. Finally, recall that 

the initial size of the bubble relative to the Hubble radius, Ro/H-’ N pe/mpr, is expected 
to be very small, provided that p,-, < mpr. 

(b) Gravitational radiation in the linearized approximation 

Now we write down the formalism for computing gravitational radiation from a source 

in the linearized-gravity approximation. All necessary information is contained in the 

space-space components of its stress-energy tensor P”(x, t); we follow the treatment given 
by Weinberg [18]. He defines the space-space components of the Fourier-transformed stress 

tensor with the unusual convention 

Tij(G,U) = & / dteiut J d3zTij(x, t)C’k’x. (16) 

The components contributing to gravitational radiation satisfy the null condition k,lc@ = 0, 

i.e., Ikl = w. The total energy radiated in the direction k into the solid angle dR at 

frequency w is given by 

& = 2Gw’Aij,l,(l;)T”*(k,w)T’“(k,w), (17) 

where Aij,l, is the projection tensor for gravitational radiation, 

Aij,lm(G) GE 6il6jm - 21;j1;,6i[ + ~iij&jLlii, 

- i6ij6lm + ~6ijir(ic, + iS,,,ii,l;j. 
(18) 

0 ur problem is axially symmetric about the z-axis connecting the two bubble centers, so 

without loss of generality we can take 

k, = sin0, liy = 0, I;, = cost9 Wa) 

k=wk; wz G w sin 0, w, E WCOSB. 

We note the following symmetry properties of the projection tensor: 

(lgb) 

bj,fm = Alm,ij ; Wa) 

Aij,lm6ij = 0 ; WJb) 

Aij,),icil;j = 0; WC) 

Aij,~m6izJjzJ~z6mz = .4zzjzz = i(l - kz2)’ = i sin4 0. (204 
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For the stress-energy tensor we take the canonical form 

TPy = iY,~a,~ - Lg”“. (21) 

From Eqs. (17) and (20b), it follows that any term in Tij(lc) proportional to 6ij yields no 

gravitational radiation (“pure trace” terms do not contribute to gravitational radiation). 
Thus for the purposes of calculating radiation, we make the replacement 

Tij(x, t) = aim ajp + SijC + sip ajp. (22) 

From this point on, all references to Tij actually mean ai~a~~. 

(c) Quadrupole approximation 

Before exhibiting the components of the Fourier-transformed stress tensor in full gen- 

erality, we consider quadrupole approximation. The familiar quadrupole approximation is 

obtained simply by taking the limit k. x -+ 0: 

Tij(&,w) - TX:(u) G & /d&t/ d3s Tij(X, t) 

= Jdte”‘Jd32si~~j~. (23) 

With axial symmetry about the z-axis, the off-diagonal components are zero and ‘7?(w) 

must be of the form 

T:(W) = D(w)Gij + A(w)6i,Jjz. (24) 

Further, the first term does not contribute to gravitational radiation, The second term is 

given by 

A(w) = 2’: - ;(T,c: + T’s) 

= &-~mdteiwt/d3x [($)‘-;(g)‘- ;($)‘] c(t) 

= ~mdteiYL~~dz l-rdr r(g)‘- ;($)‘] C(t), (25) 

where C(t) is the time cutoff discussed in the previous Section, cf. Eq. (ll), and r is the 

radial polar coordinate in the I - y plane. Note also that we have assumed the nucleation 
events take place at t = 0. 

If the two bubbles are nucleated simultaneously, the field is a function only of the two 

variables s and z; a further change of variables to the hyperbolic coordinates 

t = scoshll,, r = ssinh$, u = coshG (P > T-2) (26~) 

t = ssinh$, T = s coshli,, u = sinh$ (2 < T’) (26b) 
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leads to the following expressions: 

2 <t* : A,(w) = JGms*ds~~d*(~)2~mduCi’“~C(slij 

- ~~ras*dsJ_m_d*(~)z~oodu(u*- l)ei~~uc(su); (27a) 

r* > t* : A,(w) = ~ms2d5jp_d~(~)2~md~CiirVC(~~) 

-~~m~2d~j_m_d~(~)2~rd~(~z+~)~irauC(~~); (27b) 

A(w) = A,(w) + A,(W). (274 

The subscripts “1” and “2” denote the two regions of integration. Note that functions of 
‘p depend only upon s and z. By using equation (20d), it follows that in the quadrupole 

approximation 

& = Gw*]A(w)]’ sin4 B (28) 

where, as before, k, = cos 0. 

The quadrupole approximation is of interest because it is much simpler numerically 

than the full, linearized-gravity approximation. It also provides a check on our numerical 

results, since the radiation in the quadrupole approximation and the full, linearized-gravity 
calculation must have the same asymptotic behavior in the limit that w + 0. We do not, 

however, expect the quadrupole approximation to be accurate because our expanding bub- 

bles are highly relativistic. In fact, we would naively expect the quadrupole approximation 

to undercstimale the amount of gravitational radiation in our problem. As we shall see, 

quite the opposite is true: the total energy radiated in the quadrupole approximation is 

more than a factor of 50 larger than that in the full, linearized-gravity calculation, which 

includes all the multipoles [19]! S’ mce the total energy radiated in the linearized approxi- 
mation is presumably an incoherent sum of all the multipoles, this presents a paradox of 

sorts. We will return to this point later (its resolution is explained in Appendix B). 

(d) Full, linearized-gravity approximation 

Fixing &, = 0 with the given axial symmetry implies T’r(&,w) = P’(fi,w) = 0. The 

procedure for calculating the remaining components of T’j(&,w) is straightforward and 
essentially the same as in the quadrupole case, with the additional factor of c-ik’x in the 

integrand: 

(29) 



The polar-coordinate transformation gives. e.g., 

T”“(1;+) = ~~-dtC”LJ_I_dzJ_:d~~aTd7. (~)2CoS2~C--iw=rcosn-iu~i. (30) 

The n integral can be performed explicitly using the Bessel-function identity 

J 
7r 

eipcas= cosnx dr = 2i”xJ43). (31) 
-II 

Then, for the equal-bubble case, the same hyperbolic-coordinate transformations yield 

various expressions of the form 

T;‘(&,w) = ~~~~zds~~diciW~‘(~)2~mdu(uz - l)eiuru 

x [&(w,sJ;II-1) - J*(uzsJxi)] C(m). 

The complete expressions for T’j(&,u) are given in Appendix A. The required contraction 

with the projection tensor, cf. Eq. (17), can be reduced to 

- TYY(k,w) - 2T”(k,w)sinOcosB 
I * (32) 

(e) Unequal bubbles 

For two bubbles nucleated at different times, the situation is more complicated, as the 
field is no longer a function only of the two variables s and z. In principle, the evolution 

of the field 9 is now three dimensional (two space and one time), making the problem 

computationally intractable. However, if two bubbles are nucleated at different times with 

a space-like interval between the nucleation events, there is an appropriate Lorentz boost 

to a frame in which the bubbles are nucleated simultaneously. The formulae derived in 

Section III(d) are valid in the boosted frame, except for the time cutoff. In the original 

unequal-bubble frame, the cutoff is spatially uniform; in the boosted frame the cutoff 
is dependent on both time and space. We can use the equations derived above for the 

unequal bubble case, provided that the cutoff function C(t) is replaced by the “tilted” 
cutoff function C[y(t + /3.z)]. For unequal bubbles, we calculate the resulting radiation 

by: (a) transforming to the frame in which the nucleation times are equal; (b) using 

the formalism of Section III(d), modified by the tilted cutoff, to calculate the radiation 

spectrum; and (c) transforming the spectrum of gravitational radiation back to the original 

frame. 
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IV. Naive Expectations and Scalings 

As is often the case, the dynamical range accessible to numerical techniques does not 
allow exploration of the full range of parameter space. Therefore, it is very important to 

discover any exact or approximate scaling relations that exist. The present problem pos- 

sesses several useful scaling relations that can be anticipated-and verified by our numerical 

work. The problem of two colliding vacuum bubbles has several time/length scales: the 

separation of the bubbles d; the cutoff time r, which, since the bubbles expand at essentially 

the speed of light, sets the bubble size at the cutoff; the initial bubble size, Rs N l/&vs; 
and the initial thickness of the bubble wall, AR, also of order pi’. In the context of a 

phase transition, r corresponds to the duration of the transition, and as we shall discuss 

in Section VI, the duration of the transition and the bubble separation are expected to be 

of the same order: d N r. Further, T is expected to be of order feu, x lo-‘H-i, which 

implies that d, r >> Ro, the initial bubble size. This makes Rs an irrelevant length scale. 

Finally, there is the bubble-wall thickness, AR, which is initially of order Ro, but which 
decreases with time due to Lorentz contraction. A priori, the bubble-wall thickness could 

be an important scale; as we shall see it is not. In the end, for the case of two colliding 

vacuum bubbles of equal size there is but one relevant time/length scale: r. 

Let us now estimate the gravitational radiation produced by the collision of two bub- 

bles. Recall that in the quadrupole approximation, the power emitted in gravitational 

waves is given by 

PGW - GQ:; (33a) 

EGW - G Qs(t)*dt - J J &3(w)*& Wb) 
where Q is the quadrupole moment of the energy distribution, Qs(t) T d3Q/dt”, and 

Q~(w) 5 JQs(t)exp(iwt) is the Fourier transform of the triple-time derivative of the 

quadrupole moment. Assuming, as we have, that r is the only relevant time/length scale, 

Q3 - ~vacr*, where pvac is the energy density associated with the false-vacuum state. It 

now follows that 

EGW - GP:,,~'; Qdt) - T*f(tlT); 

Qdw) - +wT); d&w/dw - +(wT)~*; (34) 

where the function f does not depend upon r. 

Expressions (34) contain the essence of our expectations for scaling behavior: (i) First, 

the energy emitted in gravity waves depends upon the size of the bubbles when they collide 

to the fifth power; (ii) The spectrum of gravitational waves is an invariant function of wr, 

so that the characteristic frequency of radiation varies as r-i; and (iii) d&w/& varies as 

pz,,~~. As we shall see, all of these scalings are verified numerically. In a highly relativistic 

problem, one might question whether scalings based upon the quadrupole approximation 

bear up when the full, relativistic calculation is done. The answer is yes, basically because 

these relations follow from dimensional considerations. 
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The most crucial point is that the energy emitted in gravitational waves varies as the 
fifth power of the separation of the nucleated bubbles. The absolute energy radiated in 

gravitational waves is of less interest than the fraction of the vacuum energy liberated into 

gravitational waves. The false-vacuum energy released scales as 

E 3 
vat - PvacT (35) 

Comparing this to the energy radiated in gravity waves gives 

fG EGW -N GPZ,,T' 
E vat P"aC+ 

(36) 

That is, the energy fraction liberated into gravity waves varies as T*; further we recognize 

G as the Hubble parameter associated with the expansion of the Universe driven 

by the false-vacuum energy density. Thus, we discover the fundamental relation that f 
is proportional to the square of the size of the typical bubbles when they collide relative 

to the Hubble radius [lo]. Since the false-vacuum energy liberated by bubble collisions is 
responsible for “reheating” the Universe in extended inflation (or in a strongly first-order 

phase transition in which the entropy of the Universe is greatly increased), the ratio of 

energy density in gravitational waves to radiation after the transition is also f 
Finally, what are our expectations for the gravitational radiation produced by the 

collision of bubbles of unequal size? Suppose at the time of collision (i.e., when the two 
bubbles first “kiss”) the larger bubble has size R and the smaller bubble size r (< R). 

Since we expect the smaller bubble to be encompassed by the larger bubble in a time of 

order r, the time cutoff will also be of order r. The controlling time/length scale in this 
problem is P: The size of the collision region will be characterized by r, and the time rate 

of change of the quadrupole distortion will occur on the time scale I‘. (We of course assume 

that at collision, both bubbles are much larger than their initial sizes.) As in the equal 

bubble case, the relevant time/length scale determines the scaling relations: 

and 

EGW - Gp&r’, 
dEGw 
dw- 

Gd,,r6, 
-1 

w-r , 

fG Ecw -N 
E GP~,J* 

V&C N (j&J2 (38) 

Note that expressions (37) and (38) only depend upon the size of the small bubble, and 
have the same form as the corresponding expressions in the “equal-bubble” case-and 

thus smoothly extrapolate to the case R = r - T. The lack of dependence upon R follows 
because the scale r controls all the action-the size of the quadrupole moment and its time 
variation. As we shall discuss in the final Section, we do not expect a great disparity in 

bubble sizes: in, a typical first-order transition, the distribution of bubble sizes is gaussian 
with a width that is about half the mean bubble size. 
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.4s we shall now discuss, our numerical results bear out the scaling expectations dis- 

cussed here; in particular, that dEGw/dw cc ,ovacZ~6, and that f N 1.3 x 10-3(r/H-‘)2. 
As stated at the beginning of this Section the discovery of these scalings is crucial to 

applying our results to realistic situations. To illustrate, consider the following example. 
In our largest simulation, r N lOO& N 103/x/&-,. F or a realistic phase transition we 
expect r - few x lo-‘H-i w lO-%np,/Jr;r3; N 10-2(mpl/~s)R,. For p,, N lOI5 GeV, 
our simulation is just large enough to handle the realistic scenario; for v0 << 1Or5 GeV, 

our simulation is far too small. However, because the results scale, we can make reliable 

estimates even for ~0 << 10’s GeV. 

V. Numerical Considerations and Results 

Expressions (27a-b) and (Al-.48) for the various components of T’j(&,w) needed to 
compute dE/dwdR are complicated integrals over the scalar field y(x,t). As such they 
cannot be evaluated in closed form, so we must resort to numerical techniques to evaluate 

them. The numerical work consists of two parts: evolving the field and evaluating the 
integrals. We work with dimensionless units, defined in terms of the scales associated with 

the scalar field +P. The mass of the scalar field rni = Xpi defines the natural time/length 
sly&: m-1 = x-w vi’; and Xcpi defines the natural scale for energy density. We thus 
define thl dimensionless quantities, denoted by a tilde: 

(qt) = (j.,t)x-“2y;l; (w, k) = (G, ~)X”Tpo; Y = e&Jo; (39) 

where (z,t) are (length, time), (w, Jc) are (frequency, wavenumber), p is energy density, 
and of course Tz = c = 1. The Lagrangian density becomes 

L: =xy;: 1 1 a$5 a+ --- 
2 dZP az, - i(G2 - 1)s - E($ + l)] (40) 

In terms of these dimensionless units, the quantities that we calculate are related to physical 

units by 

d&w 
-= 

dw 
’ &w(e); 

dG 

d-&w 6 -r = P$9,4mp, --2 d&w(e) -6 
dw & r; 

EGW(e) = ,j-‘i2 ” - 
mplzEGW(+ 

P".%C = ~$&&a,. (414 

Note that the dimensionless units for the quantities involving EGW differ by a factor of 

~~/rnpls from other energy-related quantities (due to the dimensional factor of Newton’s 

constant G = mpl-s in their definitions). While the dimensionless quantities d&w/& 
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and &+Gw are independent of X, they do depend upon E, scaling as e* (which follows from the 
fact that EGW cc pz,,). In all of the results and Figures that follow, we use dimensionless 

units but omit the tildes for ease of notation. To recover the physical units of dimensionless 

quantities, simply use the conversion factors given above. 

(a) Field evolution 

As mentioned above, for the case of two bubbles nucleated simultaneously, the wave 

equation governing the field evolution can be converted to a l+l dimensional partial- 

differential equation in the space coordinate z and the “time” coordinate s. First, Eqs. (4) 
and (5) are solved for the bubble profile using a straightforward estimator method. The 
initial conditions are the field values along the z-axis connecting the two bubbles; for the 
equal bubble case, we have reflection symmetry about the z = 0 plane, so only the field 

values for t > 0 must be calculated. We impose a reflective boundary condition at z = 0 

and evolve the field in steps using Eq. (15) with a staggered leapfrog algorithm. Recall 

that the bubble-wall thickness decreases roughly as t-’ due to Lorentz contraction; our 

step size is chosen to give reasonable resolution of the final bubble wall-thickness (at least 

ten grid points across the thickness of the bubble wall). 

A common check on the accuracy of scalar field evolution is to calculate the total 
energy of the field at each time step and make sure energy is conserved to within some 

prescribed tolerance. Unfortunately, since the “time” variable s is not the true time (recall 
sz = tZ - r*) energy is not conserved from one s-step to the next. But the energy between 

s-steps does change in a definite way, and we can use this fact as a check on the scalar-field 
evolution [16]. The Hamiltonian density of the field is 

V%Z) = #‘+ g,* + V(y), (42) 

Consider an infmitesimally thin tube of radius dr along the z-axis; the total energy con- 

tained in this tube is 

EC+ = 2xdr [l”, dz ‘H(z, r> t)] IrcO 

Taking the time derivative (equivalently, the s-derivative) of both sides gives 

17 

(43) 

(44) 



where we have integrated by parts and the used the equation of motion, Eq. (15). As a 

field-evolution check, at each s-step we calculate the total energy, Eq. (43), as well as an 

estimate by integrating Eq. (44) over all the s-steps to that point, and make sure the two 

match to within a given error, which we generally take to be 2% for all times. We choose 

our s- and r-partition sizes to be 0.025 and 0.05, which gives acceptable field evolution for 

all but our largest bubble separation; for d = 480 the energy check has an error of around 

7% at the time cutoff. Note the initial bubbl e size in dimensionless units is Ro - 10. 

For the largest simulations, taking a finer grid spacing actually increases the error in the 

field evolution, suggesting that our precision is limited by accumulated roundoff errors 

and not by partition size. We believe that this inaccuracy in the field evolution does not 

significantly affect our calculations. 

(b) Numen’cal integration 

Formulas (Al-A8) must be evaluated to compute the amount of gravitational radiation 

from two bubbles nucleated simultaneously. The task at hand is to evaluate numerically 

a three-dimensional integral, for many values of k (direction) and w. Reflection symmetry 

reduces the range of z-integration to positive values. Note that for a given value of s, 

the z-integral and the u-integral are independent, since the field derivatives depend only 

upon s and z. In effect, the integrals are each a pair of double integrals instead of a 

single triple integral. This greatly aids numerical evaluation. First we choose values for w, 

the frequency of the radiated power, and 8, the polar angle of the direction of radiation 

(kz = cos8). Then beginning with the initial bounce solution for p(s), we evolve the 

field with the “time” variable s. After a certain number of time steps, we evaluate the 
r-integral with a Simpson’s Rule integration over the partition of ‘p, and the u-integral 

with a trapezoidal integration over a partition which varies in size depending upon how 

many oscillations of the integrand occur in the region of integration. These two integrals 

are multiplied together, and a running sum for the s-integral is incremented. Note that the 

z and u integrals are not true Fourier transforms, since the transform variable w appears 

in the integrand as well as in the exponential factor. Thus the usual technique of the Fast 

Fourier Transform cannot be used. 

We have tested our code in a variety of ways. First we have computed the gravitational 

radiation from a single, expanding bubble; while not precisely zero, it is about seven orders 

of magnitude smaller than that from two colliding bubbles. We have also computed the 

amount of radiation when the cutoff r is less than d/2, so that the two vacuum bubbles 

do not collide. Again, the result is seven orders of magnitude smaller than in the case of 

two colliding bubbles. Finally, the asymptotic behavior of the full linear result and the 

quadrupole result are identical as w -+ 0. 

As explained in Section III(e), the case of two bubbles nucleated at different times is 

equivalent to the equal-bubble case with a tilted time cutoff C(t,t). In the expressions 
for the stress-tensor components, the r-integral and the u-integral, which are independent 
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in the equal-bubble case, are now coupled since the u-integrand depends explicitly on z 

through the cutoff function C(su,z). This of course makes the numerical evaluation of 

the integrals much more time consuming, since now we must evaluate triple integrals. We 

are limited to only a handful of data points for unequal bubbles, as the computing time 

involved is nearly two orders of magnitude greater than in the equal-bubble case. 

(c) Results for equal bubbles 

We consider identical bubbles nucleated at time t = 0 with centers on the t-axis at 
z = &d/2. A geometrical criterion for the cutoff time r is used: 

s=&@G&d; (45) 

that is, at the cutoff time, the bubble radii are ad (disregarding bubble interactions). This 

is geometrical in the sense that for any value of d, the bubble configuration at t = r will 

look identical, up to an overall resealing of distance. The final bubble configuration for 

representative values of (Y is shown schematically in Fig. 3. 

We begin with the results for our “benchmark case”: initial separation d = 60; cutoff 
time factor 01 = 1.2; cutoff function given by Eq. (11) with r, = 0.9r and 7s = 4(r - 7,); 

scalar-field potential given by Eq. (2) with E = 0.1. In dimensionless units, for E = 0.1, 
the initial bubble radius is & x 9.5, making the cutoff time T = 71.37. After discussing 

the results for this case, we vary the parameters individually and explore how the results 
change. For each case, we calculate dE Gw/dwdfl for a range of frequencies, at angular 
increments of 2”. The energy spectrum dE/dw is obtained by a numerical integration of 

dE/dwdR over solid angle. 
Figures 4a and 4b show radiation patterns for the benchmark case, i.e., polar plots of 

dE/dCUw for 0 5 8 5 s for various values of w. Recall that the problem possesses axial 
symmetry, so the energy radiated into the solid angle dR is independent of the azimuthal 

angle 4. Further, symmetry dictates that dE/dwdR vanish along the z-axis. As the fre- 
quency approaches zero, the radiation pattern approaches the quadrupole pattern. As the 

frequency increases, higher multipoles dominate and the ‘Lantenna pattern” develops more 

and more lobes. In Fig. 5 we display the integrated radiation pattern, dE/dR. Superim- 

posed is an unnormalized quadrupole pattern for comparison. Clearly higher multipoles 

make a significant contribution to the total energy radiated. 

The substantial power from higher multipoles would suggest that the quadrupole ap- 

proximation should not be very good for this problem-as expected since the problem is 

highly relativistic. This is the case: Fig. 6 shows dE/dw in the quadrupole approximation 

and in the full-linearized approximation (“all multipoles”); however, the radiation from the 

quadrupole calculation is much greater than the radiation from the full calculation! This 
is paradoxical since the full calculation is just an incoherent sum of all the multipoles, and 

thus must be greater than the quadrupole contribution. We discuss in detail the resolution 
to this paradox in Appendix B. Briefly, the explanation is that the familiar “quadrupole 
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approximation” is not precisely the quadrupole multipole that appears in the multipole 
expansion. An additional assumption has been made in deriving the “quadrupole approx- 

imation,” namely that the source is small, having physical size < w-i. In nonrelativistic 

systems this condition is satisfied, since the physical size is set by a characteristic veloc- 

ity times w-l. The “exact quadrupole”-computed without assuming that the source is 

small-is indeed smaller than the sum of all the multipoles. A simple analytic model 

considered at the end of Appendix B nicely reproduces the ratio between our quadrupole 
approximation and full-lmearized calculation. 

Fig. 7 illustrates the principal result of this paper. We vary d while holding other 

parameters fixed; in particular cy = 1.2, so that r = 1.2d. In Fig. 6 the scaled energy 

spectrum, r-‘dE cw/dw, is shown as a function of WT. According to our naive expec- 

tations, rp6dEcw/du should only be a function of wr: the spectrum for all values of T 
should coincide. This is the case; the spectra for r=192, 288, 360, and 576 are virtually 
indistinguishable. The spectra for r=120 and 72 differ from these by about 20% and 80% 

respectively. Note that in going from 7 = 72 to r = 576, dEcw/dw has increased by a 
factor of about 3 x 105! 

The approach to scaling as r becomes very large is quite convincing. The relatively 

large discrepancy for T = 72 (d = 60) is easily understood: in this case the initial bubble 
size, Rs N 10, is not negligible compared to the final bubble size, R x 72, and the neglect 

of the initial bubble size is not as well justified. In any case, scaling is quite apparent in 

the regime of relevance, r N d >> Ra. If we integrate the spectrum over frequency (in the 

scaling regime), we find that 

Ecw N 1.7 x 10-3~5, 

in our dimensionless units (and for E = 0.1). 

In Fig. 8 we show the spectrum in the scaling regime plotted slightly differently: 

r- ‘jdEcw/dlnwr as a function of wr. This corresponds to the energy radiated per octave, 

and we note that dEGw/dlnwr: (i) peaks at a frequency urnax N 3.8/r; (ii) increases as 

(LJT)‘.’ for w s w,,,; and (iii) decreases as (~r)-i~s for w 2 w,,,. That is, the energy 
radiated in gravitational waves has a characteristic frequency: w,,, N 3.8/r. 

Now consider the scaling with T for fixed d, under variations of cy. For a realistic 

phase transition, we expect d to be of the order of T; i.e., duration of the phase transition 

comparable to the initial bubble separation (see Sec. VI). In Fig. 9 we show the total 
energy radiated as a function of o for d = 60 fixed, with LY ranging from 1 to 8. This 

range of (Y corresponds to the phase transition ending when each bubble wall just reaches 
the other bubble’s center (o = l), to it ending when each bubble wall has moved a factor 

of 8 times the distance to the other bubble’s center. Over the range 01 N 1 to 2 or so, 

EGW o( c?, as expected from the scaling prediction dEGw/du K r6 (valid for d N 7). For 
the largest values of 01, EGW increases more slowly than this, and we expect that in the 

unphysical limit 01 > 1, EGW 0: a3 [20]. T o recapitulate, by varying both 01 and d, we have 
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shown that, provided d N T (i.e., a of order unity), the energy spectrum r-6d&W/dW is 
only a function of WT, and the total energy radiated in gravity waves EGW c( r5. (That is, 

neither quantity explicitly depends upon d or 01, provided (Y N U( 1) and d > Rs.) 

Next, consider the scaling of the energy radiated in gravity waves with the vacuum- 
energy density; in the previous Section we argued that EGW 0: p&,. To vary pYac we have 

varied E (from 0.033 to 0.15); recall that for the potential given by Eq. (2), pvac = ZeX& 
is a good approximation. Changing E not only changes pvac, but also changes the initial 

size of the bubble, Ro, and the shape and thickness of the bubble wall. In Fig. 10 we show 

EGW as a function of pvac, for d = 240 and cy = 1.2; it is apparent that pow scales quite 
precisely as p:,. As a further test of this scaling we have also tried an alternative form 

for the scalar potential, 

V(Y) = ;(Y2 -Ry + eXylJ(y3 - ipi); 

where the term that the breaks the degeneracy between the two vacua is cubic rather than 

linear. The energy radiated in gravity waves in this case falls neatly on the same line as 
for our original potential. 

Finally, recall that we introduced a time cutoff r to take into account the fact that 
the vacuum bubbles do not expand into the false vacuum forever; eventually they meet 

up with regions which have been converted to true vacuum by other bubbles. Physically, 
r represents the duration of the phase transition. Our results depend quantitatively upon 

the choice for the cutoff function, but the qualitative dependence is slight. Besides our 

standard gaussian function, Eq. (ll), we have used the following different forms for the 
cutoff function C(t): 

c(t) = i ti2 (W) ( yyty:; 
c(t) = i ;(z+-;rc)3 - i (*) + +, ~c~‘~~:. (47b) 

Moreover, we have varied the time r, at which the cutoff comes into play. The sensitivity 

of our numerical results to the choice of the cutoff are shown in Figs. 11 and 12. 

(d) Summary Of numeTica1 results 

To summarize, through numerical simulations we have established that the energy 

radiated in gravity waves in the collision of two vacuum bubbles depends upon only the 

grossest features of the bubble collision: the false-vacuum energy density pYac and the 
duration of the collision (cutoff time r), provided that the separation of the bubble centers 

d is comparable to r and d is much greater than the initial size of the bubbles, Ro (both 

assumptions are true in the cases of interest). In particular, 

d&w 2 
- m P”ac~6; OLJ 

W,,,T N 3.8; 
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iGW = aP,,,r > 
-2 -5. 

where in the final expression a N 0.042. 

(48) 

With this result in hand we compute the fraction of the total vacuum energy released 

that goes into gravitational waves. Neglecting the interaction of the two bubbles, at time 
r the volume occupied by two bubbles separated by distance d is 4ar3g(a)/3, where the 

geometrical factor g(o) = 1 + 3/4o - l/16 01~ accounts for bubble overlap; the vacuum 

energy liberated is just this volume times pvac. For simplicity, we ignore the geometrical 
correction factor of order unity and write E,,, = 4xr3p,,,/3; it then follows that the 
fraction of the vacuum energy released that goes into gravitational waves is given by 

fE 
EGW -= 
E Y&C 

(49) 

which by relating pvac to the Hubble parameter, H* = 8xp,,,/3mpr2, can be written as 

f = $ (&>’ N 1.3 x 1o-3 (&J 

That is, the efficiency of gravitational radiation depends upon the ratio of r to the Hubble 

time; this is the result predicted in Ref. [IO]. That this is the case is not completely 

surprising; recall that the Newtonian gravitational potential outside a bubble is d/c2 - 

(R/H-‘)‘, where R - r is the size of the bubble; this implies that as R/H-’ -+ 1 the 
gravitational field becomes strong. Also note that as T + H-’ our calculation becomes 

suspect, as we have linearized gravity, neglected the expansion of the Universe, and ignored 
gravitational effects in the bubble nucleation process. As we shall discuss in the next 

Section, in typical cosmological circumstances one expects r/H-’ to be of the order of a 

few per cent. 

(e) Unequal bubbles 

Because of the massive computational resources required, our results for the unequal- 

bubble case are very limited. We have considered two cases. As viewed in the equal-bubble 
frame d = 60; the equal-bubble frame is related to the lab frame by a Lorentz boost along 

the t-axis of: (i) p = 0.1, corresponding to a difference of nucleation times of At u 6 and a 
ratio of bubble radii when the bubbles first touch of about 1.22; (ii) p = 0.2, corresponding 

to a nucleation time difference of 12 and ratio of bubbl e radii at first touch of 1.5. Note 
the separation of the bubbles in the lab frame is md N 60. Fig. 13 shows the energy 

spectrum of gravitational waves for these two cases, along with the equal-bubble case for 

comparison. For the unequal-bubble collisions the total energy radiated is smaller and the 

peak of the spectrum is shifted (slightly) to higher frequencies. This is consistent with our 

expectation that in an unequal-bubble collision it is the size of the smaller bubble that 

sets the length/time scale for the problem. 
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VI. Discussion and Concluding Remarks 

(a) Bubble nucleation: expectations for T and d 

Our results depend sensitively upon the duration of the phase transition r and rely 

upon the assumption that the bubble separation d is of the same order as the duration 

of the phase transition r. To address both questions we briefly discuss bubble nucleation 

in a first-order phase transition. The bubble nucleation rate (per volume per time) is 

generally of the form r = M4 exp(-A(t)]; the tunneling action A varies with time through 

its dependence upon the temperature (or the evolution of other fields) and, given a specific 
model, is straightforward to compute [12]. The prefactor is more difficult to compute and 

less important (all the “action” is the action); M is an energy scale characteristic of the 

phase transition, expected to be of the order of the fourth-root of the false-vacuum energy 

density (or equivalently, the phase-transition temperature). The completion of the phase 

transition occurs roughly when r w H4, which corresponds to a nucleation rate of the 

order of one bubble per Hubble time per Hubble volume. Given .4(t), it is easy to describe 

the phase transition in detail: duration, distribution of bubble sizes, etc., and this is done 

in Ref. [21]. We quickly review the salient facts here. 

First, expand the action around t = t,, the time at which the phase transition com- 
pletes: 

A(t) = A. + i,(t - t*) + ; (51) 

note that A, E [dA/dt]ItEt. < 0. This expansion is general enough to describe most first- 

order phase transitions; moreover, it is the rate of change of the action that determines all 
quantities of interest here. Let H, be the value of the Hubble constant at time t,; we can 

solve for A. by equating I’(t,) to H,4 - M8/mp1*: 

A, N 4ln(mpt/M); (52) 

For simplicity, assume that bubbles are nucleated with zero initial size and expand at the 

speed of light. Then if a(t) is the cosmological scale factor, the volume at time t of a 
bubble nucleated at time t’ is 

v(t,tY = 2 [a(t,p&]‘ (53) 

The probability that a point in space still remains in the false vacuum at time t is 

p(t) = eer(*), where 

/ 

t 
I(t) = l?(t’)V(t, t’)dt’. (54) 

0 

The kinematics of bubble nucleation depends upon r(t) and I(t). At the end of the phase 

transition, the distribution of bubble sizes T is 

2 = {a(t)3r(t)e-‘(f)} It=t(r); 
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where t(r) is the time at which a bubble of size P was nucleated, defined implicitly by the 

equation T = a(t) $r, du/a(v). We define th e end of the phase transition (t = t*) to be 
the time when the probability that a point in space remains in the false vacuum is very 

small, p(t.) = e-M, where A4 - 10 - 30 (i.e., I, = M) and the duration T to be the 
time it takes I(t) to increase from m to M, where m N 0.1 - 1. Matters simplify if we 

assume that the transition lasts a Hubble or less (corresponding to ]A,] 2 H); for most 
cases of interest, this is a good approximation. Making this assumption, the duration of 

the transition r N ln(M/m)/]&] N few/IA,] and the distribution of bubble sizes 

d” = $$ exp[-(r - rs)*/2~?], 
dr (56) 

where rs = In&f/IA,] is the mean bubble size, 0 = l/IA,] N r0/2 is the gaussian width of 
the distribution, and the average distance between bubbles 

Since our results depend only logarithmically upon the somewhat arbitrarily defined quan- 

tities M and m, we need not be too concerned with refining their definitions. 

Based upon this simple model we see that duration of the phase transition, the typical 

bubble size, and the bubble separation are all comparable and determined by ]A.]: in 

particular, r N fezo/]A,]. Finally, let us relate IA.1 to A., and thereby to M or T,. 
The tunneling action varies with time because of its temperature dependence (or the 

evolution of other fields); unless one “tunes” the parameters of the model, one would 
expect the timescale for change in the action to be comparable to the timescale on which 

the temperature changes, which implies that dA/dt - A,/H;‘. If we define ]A,] = PA,H, 
we expect the dimensionless constant /? to be of the order of unity. We can then write 

r/H;’ 21 few/PA, N l/ln(mpr/M) - l/ln(mpl/T.). For the temperatures of interest, 
say 1 GeV to 10’s GeV, r/H;’ is expected to be order a few percent; thus (r/H;‘)* - 

10e3, which implies that the fraction of vacuum energy converted into gravitational waves 

is of the order of 10m6 to lo-‘. (We note that in inflationary models associated with a 

first-order phase transition, referred to as extended or first-order inflation 191, r/H;’ is 

usually close to unity [21], w c is even more favorable for gravity-wave production.) hi h 

(b) Summary 

We have numerically studied the collision of two bubbles of true vacuum in Minkowski 
space, and in the linearized-gravity approximation we have computed the amount of grav- 

itational radiation produced in a time r comparable to the bubble separation d. As we 
have discussed, both the linearized-gravity approximation and the neglect of the expan- 

sion of the Universe are good approximations for T 5 H-‘; further, in a realistic phase 

transition, one expects r to be of the order of d. Most of the gravitational radiation 
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produced is associated with the bulk motion of the bubble walls and not the fine-scale 

oscillations associated with internal motions of the scalar field. Because of this fact, the 
gravitational radiation that arises from the collision of two vacuum bubbles is very simple 

to characterize. It depends only upon the duration of the phase transition T and the false- 

vacuum energy density pyac. In particular, the spectrum dEGw/dw cx &,,T~ and peaks at 

a characteristic frequency wmaX N 3.8/r (characteristic of the bubble wall curvature and 

not the thickness of the bubble wall). The fraction of the total vacuum energy liberated 
by the collision of two vacuum bubbles that is released in gravitational radiation is about 

1.3 x lo-3(r/H-1)s. 

While our results are based upon the full, linearized-gravity approximation (i.e., sum of 

all multipoles), we also computed the gravitational radiation in the familiar “quadrupole 
approximation.” Surprisingly we find that the quadrupole approximation overestimates 

the amount of gravitational radiation produced by a large factor (more than 50); since the 

full, linearized-gravity result is just the incoherent sum of all the multipoles, this presents 
a paradox. The resolution of this paradox is simple: The familiar “quadrupole approxima- 

tion” (like its dipole counterpart in electromagnetism) involves an additional assumption: 

namely that the source size is small compared to the wavelength of the radiation produced, 

and this assumption is not satisfied in the present circumstance. The %ue quadrupole” 
contribution to the full, linearized-gravity approximation is indeed smaller the sum of all 

the multipoles. Further, a simple analytic model described in Appendix B explains quite 

well the discrepancy between the full, linearized calculation and the familiar “quadrupole 

approximation.” 

The collision of two vacuum bubbles is a potent source of gravitational radiation; we 

expect that a fraction of order low6 or so of the vacuum energy released when vacuum 

bubbles collide goes into gravity waves. Careful estimates of the contribution of a strongly 
first-order phase transition to the stochastic background of gravitational radiation based 

upon the present work are made elsewhere [ll]. 

It is a pleasure to acknowledge many stimulating conversations with Lawrence Widrow, 

and helpful conversations with E.W. Kolb, R.V. Wagoner, and R.M. Wrdd. This work was 

supported in part by the NSF (AK’s graduate fellowship), by the DOE (at Chicago and 

Fermilab), and by the NASA through grant NAGW 2381 (at Fermilab). 

Note added: After this work was completed we became aware of a similar numerical study 

by M. Shibata and Y. Nambu (Kyoto University preprint 1095). Their results for the 
amount of gravitational radiation produced by bubble collisions are significantly smaller 

than ours (some 6 orders of magnitude) and the conclusions they draw very different. 
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Appendix A: Stress-tensor Components 

This Appendix contains the complete formulas for the relevant components of the 
Fourier-transformed stress tensor in the case of two vacuum bubbles nucleated simultane- 

ously. The subscripts “1” and “2” refer to two different regions of integration prior to the 

hyperbolic change of variables, Eqs. (26), and rz = x2 + y’. A given component of the 
stress tensor is a sum of the “1” and “2” contributions. The T’v and Tsz components are 

zero since we have taken k, = 0. 

For rz < t2 (region 1): 

x [J,,(w,sJ;15-1) - J+.sJuz-l)] C(m) (Al) 

Tfy(G,w) = ~~mszds~~dz~iY~T(~)z~Dod~(~z -l)eiwsu 

x [J&s-) + Jz(w,sJ;li_l)] C(m) (A2) 

Tf’(&w) =~aszds/_m_d~eiY~‘(~)Z~~dueiY’YJa(w.s~)C(su) (A3) 

~~z(~,~)=-~~“szds/_“,d~e’Y~i(~)(~)~md~~~iYdY 

x Jl(uzzfi)C(su) (A4) 

For r2 > tZ (region 2): 

~~‘(l;,v)=~~m~zds~~d~si”.‘(~)2~00du(~z+l)ei”’Y 

x [J,,(wzsJz;l+l) - Jz(wzsJ11z+1)] C(su) (A5) 

TZyy(&,w) = ~~mszds~~d~ei~.‘(~)z~md~(~Z +l)eiwSu 

x [J&,sJzLz+1) + &(wrs~)] C(w) (‘46) 

T;“(k,w) =~mszds~~dreiY=‘(~)2~mduei”aYJo(w,s~)C(su) (A7) 

T;‘(~,~)=i~ms2ds/_m_d~~i~~z(~)(~)~”d~~ei””” 

x Jl(w,sJzlzfl) C(m) (AS) 
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where k, = cos 0, w, = w cos 0, w, = w sin 0; J, is the Bessel function of order n; and C(z) 

is the cutoff function, cf., Eqs. (11, 47ab). As discussed in Section II, the scalar field +J is 

a function only of s and z. 

Appendix B: Resolution of a Paradox 

It may seem paradoxical that the flux of gravitational waves is smaller when calculated 

in the full-linearized approximation (linear gravity, fully relativistic treatment) than in the 

quadrupole approximation (linearized gravity, lowest-order in u/c). After all, shouldn’t 

the total energy radiated be given by an incoherent sum of all multipoles-quadrupole, 

octupole, and so? The answer is yes and no. 1 We will elucidate this interesting and 

important point by first examining the electromagnetic analogue. 

(a) Multipole electromagnetic radiation 

Linearized gravity is like electromagnetic theory with an extra index. Thus the treat- 
ment of electromagnetic multipole radiation provides a simple and familiar example to 

illustrate the underlying reason why the radiation in the “full” calculation can indeed be 

less than that given by the quadrupole formula. 

Recall the multipole formalism of electromagnetic radiation [22]. In the far-zone (dis- 
tance T > wavelength X = 2s/k), E and B are expanded in vector-spherical harmonics, 

XI, and n x XI, (I = 1,2,3,. . .; m = -I, -2 + 1,. I - 1, I): 

B-+ e’k]ET~‘yt z(-i)‘+’ [a~(l,m)Xh + aM(l, m)n x Xl,], (Bla) 

E-+Bxn, (Bib) 

where ]k] = w, n is the unit vector in the radial direction, and for simplicity, just a single 

mode is considered (which is easily generalized to a Fourier integral). The power radiated 
in electromagnetic waves is given by the incoherent sum over multipoles: 

P= & E [bdlt m)12 + bM(l, m)l’] 

The electric- and magnetic-multipole amplitudes are obtained by solving the field equations 

in the near zone and matching to the far-zone solutions, Eq. (Bl). In particular, the 

electric-multipole amplitudes a~(l, m) and magnetic-multipole amplitudes UM(I, m) can 

be expressed in terms of integrals over the source: 

p$ [rj,(kr)] + ik(r J)j,(!v) dsz, (B3a) 

aM(lTm)=-id& 
J 

y,*, {V (r x &l(h)} d3x; (B3b) 
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where j,(kr) is the spherical-Bessel function of order 1, p(x)ewiwt is the charge density, 
J(x)e-‘“’ is the current density, and for simplicity the magnetization term has been left 
out. These results are exact. 

The lowest-order term, a&l, m), is the electric-dipole term; as is clear from Eq. (B2), 
the total power radiated must be greater than this term. However, the form for a~(1, m) is 

nor familiar. That is because an additional approximation is usually made when computing 

a~(l, m): the assumption that krmax << 1; i.e., that the source dimensions (5 r,,,) are 
small compared to the wavelength of the radiation. In this limit we can use the fact that 

j,(z) -+ r’/(21+1)!! for I < 1 to write all the multipole amplitudes in more familiar forms: 

(B4o) 
4akf+z 1+1 aE(ltm) = -i(21 + l)!! 1 J-J '-'yr',P& 

4ak’+= 

aM(I+)=-i(21+1)!! 
.‘Y&V. (r x J)d3z. (B4b) 

Now the electric dipole takes on its familiar form. In the limit of a small source, 

krmax < 1, the total power emitted must be greater than that given by the familiar 
dipole term. This is also true for a large source, kr max 2 1, provided that the exact 
expression, Eq. (B3a), is used for a~( 1, m).. The dipole radiation given by the familiar 

small-source approximation can be larger than the exact expression for dipole radiation, 

and so the total power emitted need not be larger than that given by the “small-source” 

(i.e., familiar) dipole expression. When the small-source approximation is used for a large 

source, one is assuming that the radiation from throughout the source adds coherently-a 

most “favorable” assumption. 

(b) Multipole gravitational radiation 

The multipole formalism and result generalizes readily to gravitational waves; we will 
present a brief sketch. To make the analogy as close as possible the equations in the 

gravitational-wave case will be denoted by primes on the equation numbers, corresponding 

to their electromagnetic analogues. For a more complete presentation of the multipole 

expansion of gravitational waves, see Ref. [9]. 

The transverse-traceless part of the metric perturbation, which describes the gravita- 

tional radiation, can be expanded in the far-zone region in tensor-spherical harmonics: 

hY = f z $, { $Ifm(t - T-)T~,‘~ + $,+(t _ rppJm} , (Bl’) 
where the I’“’ are the “mass-multipole moments,” the S’” are the “current-multipole 

moments,” and Tjy”“’ and TJy,‘* are the “pure spin-2” tensor harmonics, which are 

linear combinations of the six, orthonormal tensor harmonics, Tj!L’7’m (A = 0 and 1’ = I; 

X = 2 and I’ = I It 0, fl, f2). 
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The power radiated in gravitational waves is given by the incoherent sum of the mul- 
tipole moments: 

P 
GW 

~‘+lp/&l+l~2 + pl+l~‘“/&‘+l~2} 

As in the electromagnetic case the multipole moments are obtained by matching the near- 

zone solution to the far-zone solution, Eq. (Bl’), and can be written as integrals over the 
stress-energy tensor of the source: 

-$I’“‘(t) = (-i)‘+‘S / ,-iu(t-t') [ / 

-~~l~~~.‘-(~)l*j,(~~) + ~~]~~~+2,‘m(n)]*j,+,(,T)] 

XT&t’, T, O)r2drdCldt’du; (B3’a) 

J ,-iw(t-t') [ &$ [T,2,'-','"(n)]*j,-,(~~) 

Tpq(t’, r, Cl)r2drdOdt’du; (B3’b) 

where rP,, is the sum of the stress-energy tensor of matter (T,,) and the Landau-Lifshitz 
pseudotensor for the effective stress-energy of the gravitational field. In the present circum- 

stance gravity is weak and we work only to linear order, thus rPq = TPg. The lowest-order 

term in the expansion is the mass quadrupole (l = 2); from Eq. (BZ’) it is clear that 

the total power radiated must be greater than that given by the mass quadrupole, as the 

multipoles add incoherently to give the total power emitted. 

The form of the quadrupole (and other multipoles) in Eq. (B3’a) is unfamiliar; if we 

take the small-source (kr,,, << l), weak-field limit the familiar multipole formulas obtain: 

P = (2;$,! /~/jyfm~*pAi%; (B4’a) 

where the Y/‘rm are a different representation of the vector-spherical harmonics. As in the 
electromagnetic analogue, it is not true that the small-source (i.e., familiar) quadrupole 

approximation must give a result that is smaller than the sum of all multipoles. 
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(c) A ~impie model for colliding va~~m bubbles 

By constructing a simple model for the collision of two vacuum bubbles we can also 
illustrate how it is that the flux of gravitational waves computed to all orders in the 

full-linearized theory (“full”) is less than that computed in the familiar “quadrupole ap- 

proximation” (“quad”). In the collision of two vacuum bubbles most of the “action” is 
along the z-axis (the axis joining the bubble centers); in the z-y plane the scalar field is 

relatively “quiet.” Thus as a simple approximation we model the stress-energy tensor as 

F(x, t) = Pj(,, tp(7-)qL - r), (B5) 

where r is the radial coordinate in the z-y plane, O(r) is the Heaviside function, L is the 

characteristic radial size of the collision region, expected to be of order half the separation 

of the bubbles, i.e., L - d/2. 

From Eq. (B5) it follows that the desired Fourier transform of T’j(x, t) is given by 

T’j(k,w) = 2rrL2Tij(k,,“)~‘~,~‘), (B6) 

where B is the usual polar angle (k, = w cos 6) and Jr is the first-order Bessel function. 

Further, it then follows that 

&+I” 
-= Gsin4BW2[t(kz,w)lZ 

I 
2xLzJl(wL sin 8) 

dRdu WL sin e 

yiLd = Gsin48w21t(k, = 0,w)J2 [TL*]*, 

(B7a) 

(B7b) 

where “full” and “quad” refer to the full, linearized-gravity calculation and the qua&p& 

approximation, and tii is the trace-free part of Tij and t = 2Tz*/3 - (Tzr + TYY)/~. If 

we neglect the k, dependence of t(k,,w), then it follows that 

dE’““/dRdu 

dEq-‘/ dR& = 
ZJr(wLsin8) 2 

I wLsinB . 

Note that 

[ 

2Jr(wLsinB) 2-t 1, 1 { ~Lsine < 1; 
WL sin e 8c0s2(wLsinB-3x/4)/7r(wLsin8)3, wLsinB > 1. 

This implies that the sum of all multipoles always gives a smaller result than the familiar 

“quadrupole approximation.” 

Finally, we can derive an approximate expression for dE/du baaed upon Eq. (B8): 

dEaPPr’- = 4TdEquad(o = s/2) 2Jr(wLsine) 2 

du dRdu WL sine 1 sin4 Bd cos 8, (B9) 
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In Fig. 14, we show dE/du for d = 240 (a = 1.2). Th e solid curve is our numerical calcu- 
lation. The dotted curve is approximation (B9) d erived from the numerically calculated 
quadrupole spectrum, using L = r/2 = 1.2d/2. The agreement is remarkably good for this 

very simple model. 
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Figure Captions 

Figure 1: The scalar-field potential, Eq. (2), plotted in dimensionless units for 

~~0.033, 0.05, 0.1, and 0.15. Note that E determines the ratio of the vacuum energy 

to the barrier height, while X and pa set the overall energy and length scales. 

Figure 2: The evolution of two identical vacuum bubbles. From left to right and top 

to bottom, t = 36, 60, 72, and 96. 

Figure 3: The size of the bubbles at (a) nucleation and at the cutoff time r for (b) 

01 = 1 and (c) o = 2 (we have done calculations for 01 = 1.2,2.0,2.5,3.5,5.0,8.0). An 
‘Y marks each bubble’s center. In this schematic illustration we have ignored bubble 

interactions. 

Figure 4a: Radiation patterns, dEcw/dwdR, shown about the symmetry axis. The 

patterns are for frequencies WT = 2.2, 5.0, and 11, in order of descending amplitude. Along 

the axis joining the bubble centers the total radiation is identically zero (by symmetry). 

At higher frequencies, the patterns develop more lobes, illustrating that higher multipoles 

dominate. 

Figure 4b: Radiation patterns for higher frequencies wr = 22, 29, and 36 (not to 
scale). The dominance of successively higher multipoles at higher frequencies is very ap- 

parent. 

Figure 5: The total radiation pattern dE/dR = J(dE/dwdR)du. The dotted line 

shows an unnormalized quadrupole pattern for comparison. The importance of higher 

multipoles is apparent. 

Figure 6: A comparison of the energy spectrum in the quadrupole and full-linearized 

approximations, for d = 240, (Y = 1.2. Note the quadrupole spectrum is the larger one (see 

Appendix B). As they must, the two calculations agree in the limit w + 0. 

Figure 7: The energy spectra for various initial bubble separations. The top curve 

is for d = 60; the curve second from the top is for d = 100. The other virtually indistin- 

guishable curves are for d = 160, 240, 300, 480. 

Figure 8: The energy spectrum (per logarithmic frequency interval). At low fre- 
quencies the energy per octave increases as (wr)‘.s; at high frequencies it decreases as 

(wT)-l,*. 

Figure 9: The total energy radiated as a function of pvac for d = 240, a = 1.2. The 

squares are for the potential in Eq. (2), and the triangles for the modified potential, Eq. 

(51). The straight line indicates the anticipated EGW 0: pVacZ scaling. 

Figure 10: Total energy radiated as a function of cutoff time r = (a’@ -Ri)‘/’ z ad. 

For 1.2d 5 r 5 2.2d the energy radiated scales as r5; for large r the energy radiated 
increases less rapidly than rs (for r/d > 1 we expect &w 0: 7”). 
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Figure 11: Energy spectra for different cutoffs, for d = 60, 01 = 1.2. In order of 

decreasing amplitude, the curves are for r,/r=0.95, 0.90, 0.80, and 0.70. Our results are 

at least qualitatively insensitive to 7,/r. 

Figure 12: Energy spectra for different forms of the cutoff function, for d = 60, 
(Y = 1.2. In order of decreasing amplitude, the curves are for cubic, cosine and gaussian 

cutoffs, cf., Eqs. (11, 47ab). 

Figure 13: Unequal-bubble collisions for d = 60, 01 = 1.2. For reference the solid 

curve shows the spectrum for the equal bubbl e case; the squares are for /3 = 0.1 (ratio of 

bubble sizes at collision = 1.22); and the triangles are for /Y = 0.2 (ratio of bubble sizes at 

collision = 1.5). 

Figure 14: A comparison of our numerical results for dE/& (solid curve) and the 

approximation for dE/dw (dashed curve) described in Appendix B, Eq. (BS). Results are 
for d = 240, 01 = 1.2, and L = r/2 = 0.6d. 
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